Search results for "neutrino: interaction"

showing 10 items of 11 documents

In the realm of the Hubble tension—a review of solutions

2021

The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with en…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)satellite: PlanckPhysics and Astronomy (miscellaneous)gravitation: modelPhysics beyond the Standard ModelCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsbaryon: oscillation: acoustic01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)cosmological model: parameter space0103 physical sciencesstructurePlanckinflationcosmic background radiation: power spectrum010306 general physicsdark energyneutrino: interactionPhysicssupernova: Type IHubble constant010308 nuclear & particles physicsnew physicsmagnetic field: primordialtensionredshiftAstrophysics - Astrophysics of GalaxiesRedshiftrecombinationHigh Energy Physics - Phenomenology13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]relativisticsymbolsDark energy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Phenomenology (particle physics)statisticalAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charg…

2018

This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C$_8$H$_8$) target. The data were taken between years 2010 and 2013, corresponding to approximately 6$\times10^{20}$ protons on target. Thanks to their exploration of the proton kinematics and of kinematic imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measureme…

Fermi gasProtoninteraction: modelPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsKinematicsKAMIOKANDE7. Clean energy01 natural sciencesPhysics Particles & Fieldscharged currentHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino oscillationAXISNuclear ExperimentHigh Energy Physics - Experiment; High Energy Physics - Experiment; Physics and Astronomy (miscellaneous)Charged currentneutrino: interactionPhysicsCHALLENGESPhysicsJ-PARC Labp: final state3. Good healthtransversekinematicsPhysical SciencesNeutrinospectral representationFOS: Physical sciencesddc:500.2Astronomy & AstrophysicsREGIONNuclear physicsphase spacenear detectormuon0103 physical sciencesEXCITATIONddc:530010306 general physicsNeutrino oscillationDETECTORnuclear matter effectscintillation counterp: multiplicityMuonScience & Technology010308 nuclear & particles physicshep-exnucleusscatteringnuclear matter: effectneutrino nucleus: interactionfinal-state interactionneutrino/mu: secondary beamPhase spacecorrelationPhysics::Accelerator Physicsneutrino nucleus interactionneutrino: oscillationexperimental results
researchProduct

Consistent QFT description of non-standard neutrino interactions

2019

Neutrino oscillations are precision probes of new physics beyond the Standard Model. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the…

High Energy Physics - TheoryQuarkNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelfield theory01 natural sciencesStandard Modeleffective field theory0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino Physicsneutrino: massQuantum field theory010306 general physicsNeutrino oscillationnumerical calculationsneutrino: interactionPhysics010308 nuclear & particles physicsnew physicsHigh Energy Physics::Phenomenologyquantum mechanicsEffective Field Theories3. Good healthHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798neutrino: oscillationNeutrinoneutrino: mixingLepton
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Dark matter-neutrino interactions through the lens of their cosmological implications

2018

Dark matter and neutrinos provide the two most compelling pieces of evidence for new physics beyond the Standard Model of Particle Physics but they are often treated as two different sectors. The aim of this paper is to determine whether there are viable particle physics frameworks in which dark matter can be coupled to active neutrinos. We use a simplified model approach to determine all possible renormalizable scenarios where there is such a coupling, and study their astrophysical and cosmological signatures. We find that dark matter-neutrino interactions have an impact on structure formation and lead to indirect detection signatures when the coupling between dark matter and neutrinos is …

Particle physicsStructure formationdark matter: interactionPhysics beyond the Standard ModelDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesdark matterdark matter: couplingHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesneutrino: coupling010306 general physicsneutrino: interactionPhysics010308 nuclear & particles physicsnew physicsdark matter: massdark matter: mediationHigh Energy Physics - PhenomenologyCoupling (physics)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]NeutrinoDark fluiddark matter: parameter space
researchProduct

Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

2017

A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 1020 at the GeV scale.

Physics and Astronomy (miscellaneous)CPT symmetryAstrophysicsKAMIOKANDE01 natural scienceshigh energy physicsPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Standard-Model Extension[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: interactionPhysicssymmetry: violationPhysicsJ-PARC LabCPT symmetrysuppressionLorentz symmetryviolation: LorentzmodulationSidereal timePhysical Sciencesneutrino: flavorsymbolsNeutrinoupper limitParticle physicsdata analysis method530 PhysicsLorentz transformationFOS: Physical sciencesCPT: violationAstronomy & AstrophysicsStandard Modelsymbols.namesakenear detectorstatistical analysis0103 physical sciences010306 general physicsNeutrino oscillationneutrino oscillationsScience & Technology010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologySymmetry (physics)neutrino/mu: secondary beamcorrelationtime dependenceHigh Energy Physics::Experimentneutrino: oscillationexperimental results
researchProduct

NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering

2018

International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…

electron nucleus: interactionNuclear TheoryElementary particle7. Clean energy01 natural sciencesCROSS-SECTIONSScatteringHigh Energy Physics - Phenomenology (hep-ph)Nuclear Experimentneutrino: interactionCOHERENT PION-PRODUCTIONPhysicsstrong interactionElectroweak interactionModel; Neutrino; Nuclear; Nucleus; Oscillations; Scattering; Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyMUON-NEUTRINONeutrinoNucleonnumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsOscillationsFORM-FACTORSProcess (engineering)FOS: Physical sciencesELECTROMAGNETIC RESPONSEnuclear modelNucleusMESON-EXCHANGE CURRENTSNNLO QCD ANALYSISCHARGED-CURRENT INTERACTIONSnuclear physicsdeep inelastic scattering0103 physical sciencesNeutrinoNuclear010306 general physicsneutrino nucleus: scatteringresonance: modelelectroweak interaction010308 nuclear & particles physicsR=SIGMA-L/SIGMA-Tneutrino nucleus: interactionDeep inelastic scatteringPhysics and Astronomy13. Climate actionINELASTIC ELECTRON-SCATTERING[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Atomic nucleusneutrino: oscillationEvent (particle physics)Model
researchProduct

Recent highlights from GENIE v3

2021

Funder: u.s. department of energy; doi: http://dx.doi.org/10.13039/100000015

interaction: modelGeneral Physics and AstronomyFOS: Physical sciencespi: production01 natural sciencesprogrammingdark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: scatteringGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicsnumerical calculationsneutrino: interactionneutrino nucleus: scattering010308 nuclear & particles physicsnew physicsfinal-state interactionHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]5106 Nuclear and Plasma Physics51 Physical Sciences5107 Particle and High Energy Physics
researchProduct

Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino

2017

We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99\% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.

liquid scintillators detectorsPhysics - Instrumentation and Detectorsexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinolow background detectorsSolar neutrinos01 natural sciencesflux: time dependenceneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Liquid scintillators detectors; Low background detectors; Neutrino oscillations; Solar neutrinos; Astronomy and Astrophysics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Borexinoneutrino: interactionMSW effectPhysicsNeutrino oscillationsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)neutrino electron: elastic scatteringmodulationAmplitudeModulationsolar neutrinosBorexinoNeutrinoLiquid scintillators detectorFLUXLow background detectordata analysis methodNeutrino oscillationFOS: Physical sciencesSolar neutrinoNuclear physicsTIME-SERIES ANALYSIS[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Low background detectorsLiquid scintillators detectorsSEARCH0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SPACED DATA010306 general physicsNeutrino oscillationbackground: radioactivityneutrino oscillations010308 nuclear & particles physicsAstronomy and AstrophysicsEMPIRICAL MODE DECOMPOSITIONberylliumGran SassoHigh Energy Physics::Experimentneutrino: oscillationEvent (particle physics)experimental results
researchProduct

Improved measurement of $^8$B solar neutrinos with $1.5  kt·y$ of Borexino exposure

2017

We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223\substack{+0.015 \\ -0.016}\,(stat)\,\substack{+0.006 \\ -0.006}\,(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $\Phi\substack{\rm ES \\ ^8\rm B}=2.57\substack{+0.17 \\ -0.18}(stat)\substack{+0.07\\ -0.07}(syst)\times$10$^6$ cm$^{-2}\,$s$^{-1}$. This measurement exploits the active volume of the …

model: solarneutrino: solarPhysics::Instrumentation and Detectorsscintillation counter: liquidFOS: Physical sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic raysS067HPT[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Experiments in gravityNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)neutrino: interactionMSW effectcosmic radiation: energy spectrumscintillation counter: targetS067SESneutrino electron: elastic scatteringGran SassoAstrophysics - Solar and Stellar Astrophysicsneutrino: flavorHigh Energy Physics::ExperimentBorexino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyboron: semileptonic decayexperimental results
researchProduct